Arkistot kuukauden mukaan: maaliskuu 2019

Tuulivoimaloiden infraäänen leviämisalue on laajentunut nopeasti Suomessa vuosina 2016-2017

Suomessa vuonna 2017 tehdyt mittaukset osoittavat, että tuulivoimaloiden infraääni leviää 15–20 km:n etäisyydelle lähes kaikissa olosuhteissa. Tietyt sääolosuhteet edistävät infraäänen leviämistä paljon laajemmallekin, Marchillon ym. (2015) mukaan jopa 90 km:n etäisyydelle voimaloista. Nämä mittaukset tehtiin teholtaan 1,6 MW:n voimaloista. Suomeen rakennettujen voimaloiden keskimääräinen teho oli vuoden 2017 lopussa jo 3,5 MW.

Pilottitutkimus tuulivoimaloiden infraäänihaitasta Suomessa tehtiin vuoden 2016 keväällä. Tulosten mukaan asukkaiden saamat oireet vähenivät merkittävästi vasta noin 15-20 km:n etäisyydellä voimaloista. Pilottitutkimuksen aineisto kerättiin 0,5-3 vuoden kuluttua tuulivoimaloiden rakentamisesta alueille.

Pilottitutkimus tuloksineen kuvaa siis vuoden 2016 kevään tilannetta Satakunnassa ja Pohjois-Pohjanmaalla. Asennettu tuulivoimakapasiteetti oli tuolloin Suomessa lähes 1500 MW. Kuva 1 mallintaa tuulivoimaloiden infraäänen leviämistä vuoden 2016 puolivälissä.

Infrasound Finland 2016-07-01 Infrasound Finland 2018-01-01
Kuvat 1 ja 2. Tuulivoimaloiden infraäänen leviämismallinnukset, tilanne 1.7.2016 ja 31.12.2017.

Tämän jälkeen asennettu tuulivoimakapasiteetti Suomessa lisääntyi jyrkästi vuoden 2017 loppuun saakka, jolloin se oli noin 2000 MW. Myös tuulivoimaloiden infraäänipäästö on kasvanut. Kuva 2 mallintaa tilanteen vuoden 2017 lopussa. Suuret alueet aiemmin voimala-alueiden väliin jääneistä alueista ovat muuttuneet teollisen infraäänen peittämiksi.

Vuoden 2017 aikana eri puolilla Suomea tehtyjen infraäänimittausten perusteella on todettu, että tuulivoimaloiden sykkivä infraääni leviää 15–20 km:n etäisyydelle lähes kaikissa olosuhteissa.

Tiettyjen vuorokauden aikojen ja sääolosuhteiden tiedetään kuitenkin vaikuttavan infraäänen leviämiseen tätä paljon laajemmillekin alueille. Marchillon ym. (2015) mukaan tuulivoimaloiden infraääni leviää suotuisissa olosuhteissa 90 km:n etäisyydelle voimaloista. Nämä mittaukset tehtiin 60 voimalan alueelta Uudessa Meksikossa USAssa. Tutkimuksen voimalat olivat teholtaan ainoastaan 1,6 MW.

Suomeen asennettujen voimaloiden keskimääräinen teho oli yli 3 MW vuonna 2016 ja lähes 3,5 MW vuoden 2017 lopussa. Kuinka kauas niiden aikaansaama infraääni leviää?

Altistus tuulivoimaloiden melulle ja infraäänelle on jatkunut Suomessa siis jo vuosia, vuoden 2016 alusta tai jopa kauemminkin. Tämän jälkeen teollisen infraäänen kattama alue on laajentunut ja yhä useammat ovat altistuneet ja altistuvat sykkivälle infraäänelle. Vaikka vain osa asukkaista saisi oireita infraäänestä tai tiedostaisi oireiden syyn, kaikki alueella asuvat tai työskentelevät altistuvat infraäänelle.

Muutamat tulevat kuukaudet ja vuodet näyttävät, mitä pitkään, jopa vuosia jatkunut altistus tarkoittaa asukkaiden terveydentilan ja teollisen infraäänen aiheuttaman haitta-alueen laajenemisen kannalta Suomessa.

wind-park-1279726_640

English:

The propagation area of infrasound from wind turbines has expanded quickly in Finland in 2016-2017

The measurements made in Finland in 2017 show that the infrasound of wind power plants propagates to a distance of 15–20 km in almost all circumstances. Certain atmospheric conditions advances the propagation of infrasound to much larger areas, according to Marchillo et al. (2015) to distances up to 90 km from the wind power plants. These measurements were done of 60 wind turbines of 1.6 MW each. The approximate efficiency of the wind turbines in Finland was already 3.5 MW towards the end of 2017.

The pilot study about damage caused by infrasound of wind turbines in Finland was carried out in the spring 2016. According to the results the symptoms of inhabitants were reduced significantly not until more than 15–20 km from wind power plants. The data of the pilot study was collected 0.5–3 years after erection of wind power plants to the areas.

The pilot study and its results describe the situation in Satakunta and Northern Ostrobothnia in Finland in the spring 2016. The installed capacity of wind power was at that time almost 1500 MW in Finland. Figure 1 models the propagation of infrasound of wind turbines in the beginning of July, 2016.

Infrasound Finland 2016-07-01 Infrasound Finland 2018-01-01
Figures 1 and 2. The models of the propagation of infrasound, stand 7-1-2016 and 12-31-2017.

Since then the installed capacity of wind power in Finland increased sharply till the end of 2017 when it was about 2000 MW. Also the infrasound emission of wind power plants has increased. Figure 2 models the situation in the end of 2017. Large areas between wind parks, which had previously been free of infrasound, have been covered by industrial infrasound.

It has been found out based on infrasound measurements made in different parts of Finland during 2017 that the infrasound propagates to a distance of 15–20 km in almost all circumstances.

It is known, however, that certain times of day and atmospheric conditions advance the propagation of infrasound even to larger areas than this. According to Marchillo et al. (2015) the infrasound of wind power plants propagates under favorable conditions to distances up to 90 km from wind power plants. These measurements were made in an area of 60 wind turbines in New Mexico, USA. The efficiency of these wind turbines was 1.6 MW each.

Tuulivoimalan lavat-003The approximate efficiency of the wind power plants erected in Finland was over 3 MW in 2016 and almost 3.5 MW in the end of 2017. How large is the area to which the infrasound produced by them propagates?

The noise and infrasound exposure has continued already for years in Finland, from the beginning of 2016 or even longer. In the meantime, the area covered by industrial infrasound has become larger and even more people have been and are exposed to infrasound pulses. Even if only a part of the inhabitants would have symptoms or would be aware of the reason of the symptoms, everybody living or working in this area is exposed to infrasound.

The few months and years to come will show what a long exposure, even for years, will mean to the health status of inhabitants and to the expansion of the harmful area caused by industrial infrasound in Finland. – syte/p


Pilottitutkimus osoittaa infraäänihaitan vähenevän merkittävästi vasta yli 15 kilometrin päässä tuulivoimaloista. SYTen blogi 10.1.2019. Saatavilla: https://syte.fi/2019/01/10/pilottitutkimus-osoittaa-infraaaanihaitan-vahenevan-merkittavasti-vasta-yli-15-kilometrin-paassa-tuulivoimaloista/

The Pilot Study Shows No Significant Reduction in Damage Caused by Infrasound until More Than 15 Kilometers from Wind Farms. SYTe 01-10-2019. Available: Pilot Study SYTe 2016 – English translation (pdf-file)

Auniogroup (2017). Tutkimuksen käynnistyminen [The Study Starts]. Saatavilla: https://www.auniogroup.com/2017/03/10/tutkimuksen-kaynnistyminen/

Auniogroup (2017). Tuulivoimaloiden infraääni on uusi signaali ympäristössä [Infrasound from Wind Turbines Is a New Signal in the Environment]. KauppaSuomi 34/2017, s. 6-7. Saatavilla: https://www.auniogroup.com/2017/09/11/tuulivoimaloiden-infraaani-on-uusi-signaali-ymparistossa/

Auniogroup (2018). Ilmajoen alueen tuulivoimaloiden infraäänimittaukset [Infrasound Measurements of Wind Turbines in the Ilmajoki Region]. Saatavilla: https://www.auniogroup.com/2018/01/15/ilmajoen-alueen-tuulivoimaloiden-infraaanimittaukset/

Auniogroup (2017). Kokkolan tuulivoimaloiden käynnistyminen [Start of the Wind Turbines in Kokkola]. Saatavilla: https://www.auniogroup.com/2017/12/30/kokkolan-tuulivoimaloiden-kaynnistyminen/

Marchillo, O, Arrowsmith, S, Blom, P & Jones, K (2015). On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. Journal of Geophysical Research: Atmospheres. Available: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014JD022821

12.1.2020. Revised 01-12-2020.

Diagnostiset kriteerit: tuulivoimaloiden aiheuttamat terveyshaitat

Tuulivoimaloiden aiheuttamille terveyshaitoille on olemassa tieteelliset diagnostiset kriteerit (McMurtry & Krogh 2011, 2014). Tutkijoiden mukaan terveyshaitat teollisten tuulivoimaloiden ympäristössä (AHE/IWT) ovat osoittautuneet kiistanalaiseksi keskustelunaiheeksi. ”Tämä voi tuoda haasteita lääkäreille tuulivoimaloiden aiheuttaman altistuksen käsittelyssä. Erityisesti maaseudulla toimivien lääkärien on oltava tietoisia siitä, että ihmiset saattavat valittaa vastaanotolla useista, joskus sekalaisistakin oireista.”

Diagnoosit on jaettu neljään luokkaan:
1. Mahdollinen: mahdollinen diagnoosi otetaan huomioon erotusdiagnoosina.
2. Todennäköinen: valitusten syy liittyy todennäköisesti terveyshaittoihin teollisten tuulivoimaloiden ympäristössä (AHE/IWT).
3. Oletettu: mitään muuta selitystä diagnoosille AHE/IWT ei löydy sairauskertomuksesta, lääkärintarkastuksen tai asianmukaisten tutkimusten jälkeen.
4. Vahvistettu: muut diagnoosit ovat hyvin epätodennäköisiä, ts. vähemmän kuin yksi mahdollisuus 20:sta.

Seuraavassa keskitytään kohtaan 2, todennäköiseen diagnoosiin. Sen tärkeimmät kriteerit ovat seuraavat 4, joista diagnoosiin vaaditaan kaikki:
a) Asunto enintään 10 km:n päässä tuulivoimaloista.
b) Terveydentilan muutos käynnistymisen jälkeen tai varhainen altistuminen tuulivoimalan toiminnalle ja sen toimiessa. Oireet voivat olla piileviä jopa 6 kk.
c) Oireiden poistuminen yli 10 km:n päässä tuulivoimaloista.
d) Oireiden palaaminen palatessa ympäristöön, jossa on tuulivoimaloita.

Toiseksi tärkeimmät kriteerit ovat seuraavat (vähintään 3 esiintyy tai ilmenee tuulivoimalan toiminnan alettua):
a) Elämänlaadun huononeminen.
b) Jatkuvat unihäiriöt, vaikeus päästä uneen ja/tai pysyä keskeytymättömässä unessa.
c) Ärsyyntyneisyys, joka lisää stressitasoa ja/tai henkistä ahdistuneisuutta.
d) Pyrkimys jättää koti väliaikaisesti tai pysyvästi nukkumisen ja/tai palautumisen vuoksi.

Kolmanneksi tärkeimmät kriteerit
Vähintään 3 seuraavista seuraa tai pahenee usein tuulivoimalan toiminnan alettua. Jos toiseksi tärkeimmistä kriteereistä esiintyy oireita (b ja c), muita oireita ei tarvita todennäköisen diagnoosin tekemiseksi. Tutkijoiden kokemukseen perustuen seuraavassa luetellaan yleisimmät oireet:

doctor-3187935_1280-001Neurologiset:
a) tinnitus
b) huimaus
c) tasapaino-ongelmat
d) korvakipu
e) pahoinvointi
f) päänsärky

Kognitiiviset:
a) keskittymisvaikeudet
b) muistiongelmat tai -vaikeudet

Sydänperäiset:
a) kohonnut verenpaine (hypertensio)
b) sydämentykytys
c) laajentunut sydän (kardiomegalia)

Psykologiset:
a) mielialahäiriöt, ts. masennus ja ahdistuneisuus
b) turhautuneisuus
c) ahdistuneisuus
d) viha

Sääntelyhäiriöt:
a) diabeteskontrollin vaikeus
b) kilpirauhashäiriöiden puhkeaminen tai kilpirauhasen vajaa- tai liikatoiminnan kontrolliongelmat

Systeemiset:
a) uupumus
b) uneliaisuus

 

English:

Diagnostic criteria for adverse health effects of wind turbines

There are diagnostic criteria for adverse health effects of wind turbines in science (McMurtry & Krogh 2011, 2014). According to these scientists the topic of adverse health effects in the environments of industrial wind turbines ”has proven to be controversial and can present physicians with challenges regarding the management of an exposure to IWT. Rural physicians in particular must be aware of the possibility of people presenting to their practices with a variety of sometimes confusing complaints.”

The diagnosis has been divided in four categories:
1. Possible: a potential diagnosis is considered in the differential diagnosis.
2. Probable: cause of complaints is more likely than not related to adverse health effects in the environs of industrial wind turbines (AHE/IWT).
3. Presumed: no other explanation for the diagnosis of AHE/IWT can be found by history, physical and after appropriate investigations.
4. Confirmed: other diagnoses are very unlikely i.e. less than one chance in 20.

nurse-2536964_640

In the following, #2, the probable diagnosis, is explained more closely. Its first-order criteria are the following 4, all of them must be present for a diagnosis:
(a) Domicile within up to 10km from IWT
(b) Altered health status following the start-up of, or initial exposure to, and during the operation of IWT. There may be a latent period of up to six months.
(c) Amelioration of symptoms when more than 10km from the environs of IWT.
(d) Recurrence of symptoms upon return to environs of IWT.

The second-order criteria are the following ones (at least 3 of the following occur or worsen after the initiation of operation of IWT):
(a) Compromise of quality of life.
(b) Continuing sleep disturbance, difficulty initiating sleep and/or difficulty with sleep disruption.
(c) Annoyance producing increased levels of stress and/or psychological distress.
(d) Preference to leave residence temporarily or permanently for sleep and/or restoration.

Third-order criteria
Three (3) or more of the following frequently occur or worsen following the initiation of IWT. If the symptoms described in second-order criteria (b and c) are present, no further symptoms or complaints are required for the probable diagnosis. Based on the authors’ experience, the following list provides an indication of the more common symptoms:

Neurological
(a) Tinnitus
(b) Dizziness
(c) Difficulties with balance
(d) Ear ache
(e) Nausea
(f) Headache

Cognitive
(a) Difficulty in concentrating
(b) Problems with recall or difficulties with recall

Cardiovascular
(a) Hypertension
(b) Palpitations
(c) Enlarged heart (cardiomegaly)

Psychological
(a) Mood disorder, i.e. depression and anxiety
(b) Frustration
(c) Feelings of distress
(d) Anger

Regulatory disorders
(a) Difficulty in diabetes control
(b) Onset of thyroid disorders or difficulty controlling hypo- or hyper-thyroidism

Systemic
(a) Fatigue
(b) Sleepiness

– syte/p


McMurtry, RY & Krogh, CME (2014). Diagnostic criteria for adverse health effects in the environs of wind turbines. JRSM Open 2014 5. SAGE. The Royal Society of Medicine. Available: http://journals.sagepub.com/doi/abs/10.1177/2054270414554048